A New Class of Measurement Error Models, with Applications to Dietary Data

نویسندگان

  • Raymond J. Carroll
  • Laurence S. Freedman
  • Victor Kipnis
  • Li Li
چکیده

Measurement error modeling occurs when one cannot observe a covariate, but instead has possibly replicated surrogate versions of this covariate measured with error. The vast majority of the literature in measurement error modeling assumes (typically with good reason) that given the value of the true but unobserved (latent) covariate, the replicated surrogates are unbiased for latent covariate and conditionally independent. In the area of nutritional epidemiology, there is some evidence from biomarker studies that this simple conditional independence model may break down due to two causes: (a) systematic biases depending on a person's body mass index; and (b) an additional random component of bias, so that the error structure is the same as a one{way random e ects model. We investigate this problem, in the context of (1) the estimation of the distribution of usual nutrient intake; (2) estimating the correlation between a nutrient instrument and usual nutrient intake; and (3) estimating the true relative risk from an estimated relative risk using the error{prone covariate. While systematic bias due to body mass index appears to have little e ect, the additional random e ect in the variance structure is shown to have a potentially important impact on overall results, both on corrections for relative risk estimates and in estimating the distribution of usual nutrient intake. However, the impact of dietary measurement error on both factors is shown via examples to depend strongly on the data set being used. Indeed, one of our data sets suggests that dietary measurement error may be masking a strong risk of fat on breast cancer, while a second data set suggests this may be unlikely. Until further understanding of dietary measurement is available, measurement error corrections must be done on a study{speci c basis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Reducing Measurement Error in Nutrition Assessment: Potential Research Implications for Iran

Self-reported measures of dietary intake are prone to measurement error that may obscure the relationship of diet and disease. This review addresses strategies to decrease errors during collection of dietary data and statistical approaches to deal with measurement issues once the data are collected.  Examples from two US studies-- the Women’s Health Initiative (WHI) Dietary Modificat...

متن کامل

Influence Measures in Ridge Linear Measurement Error Models

Usually the existence of influential observations is complicated by the presence of collinearity in linear measurement error models. However no method of influence measure available for the possible effect's that collinearity can have on the influence of an observation in such models. In this paper, a new type of ridge estimator based corrected likelihood function (REC) for linear measurement e...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998